Pore network model of electrokinetic transport through charged porous media.
نویسندگان
چکیده
We introduce a method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt, and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore structure of the samples as networks of pores connected to each other by channels. The PNM approach is used to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic gradients across the sample. The complex pore structure of the material is captured by the distribution of channel diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the macroscopic coefficients and the corresponding ones for a single channel of average diameter.
منابع مشابه
Upscaling Electrokinetic Transport in Clays with Lattice Boltzmann and Pore Network Models
A method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients is presented here. The Pore Network Model (PNM), describing the porosity as a network of pores connected by channels, is extended to capture electrokinetic couplings which arise at charged solid–liquid interfaces and allows us to...
متن کاملTransport Property Estimation of Non-Uniform Porous Media
In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...
متن کاملAn Irregular Lattice Pore Network Model Construction Algorithm
Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...
متن کاملA New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media
Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...
متن کامل3D Simulation of Packed Particle Bed and Transport Properties Prediction for Product Optimization through Virtual Experiments
Porous media are heterogeneous systems. The microstructures of the pore spaces influence their transport properties. A quantitative geometrical characterization of the pore space is crucial for accurate prediction of porous media transport. Thus, a 3D simulation of porous media was developed based on randomly packed glass beads. Unconsolidated porous media are reconstructed through Monte Carlo ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014